Tuesday, April 20, 2010

Creatine

Description
Mind and body are never separate, the tinkering of one impacts the other, forever intertwined like a neuron in the forest of the brain. It is for that cause that man, seeking the perfection of mind, should too seek the perfection of the body to what he may. Much work and time is undertaken to pursue such aims that to speak lowly of even the slightest attempt is to deprive oneself the highest satisfaction, the discovery of the strength of one's will. With the capacity to increase mind through the botanicals of lore and the advances of modern medicine, it too is possible to augment body more than genetics may grant.

In today's society we fear the bodybuilder's steroids for ample cause, but unknown to some is a natural compound called Creatine whose essence has the capacity to increase lean muscles and muscle endurance, exert nootopic effect (in vegetarians), anti-aging (in mice), and has been studied extensively with mainly anecedotal concerns rather than strong ones in healthy individuals (see Safety Research section for more information). It is for that cause I decided to write about this compound. It must be known, however, that it is through the heightening of prowess that muscles are built through this compound, and not by magic.




Mechanism of Action
"Fatigue sustained during short-term, high-intensity exercise in humans is associated with the inability of skeletal muscle to maintain a high rate of anaerobic ATP production from phosphocreatine hydrolysis. Ingestion of creatine monohydrate at a rate of 20 g/d for 5-6 d was shown to increase the total creatine concentration of human skeletal muscle by approximately 25 mmol/kg dry mass, some 30% of this in phosphorylated form as phosphocreatine. A positive relation was then shown between muscle creatine uptake and improvements in performance during repeated bouts of maximal exercise."[3]
In September 2009 a double blind placebo controlled study was published showing that creatine supplementation with 25 g/day for 7 days increased dihydrotestosterone (DHT) levels by 56% and that DHT remained 40% above baseline after a further 14 days of maintenance supplementation with 5 g/day. Serum testosterone levels did not change. This could explain the fact that creatine users tend to report a slight onset of acne after starting creatine supplementation. It could also be a factor when it comes to the increased athletic performance that has been correlated with creatine supplemenation, although DHT has only minor anabolic effects compared to testosterone.[1]
Procedure
There are two scientifically proven ways to supplement with creatine. The first is through a loading phase, in which 20 grams is taken for 5–7 days, followed by a maintenance phase of 3-5 grams a day for periods of 2–3 months at a time. The second consists of taking 3-10 grams of creatine per day for a period of 2–3 months with no loading phase. It is generally recommended to take at least 1–2 weeks off from creatine supplementation in order to maintain a proper response mechanism in the body.[1]
Safety
"Some current studies indicate that short-term creatine supplementation in healthy individuals is safe, although those with renal disease should avoid it due to possible risks of renal dysfunction, and before using it healthy users should bear these possible risks in mind. Small-scale, longer-term studies have been done and seem to demonstrate its safety. There have been reports of muscle cramping with the use of creatine, though a study showed no reports of muscle cramping in subjects taking creatine-containing supplements during various exercise training conditions in trained and untrained endurance athletes.The cause of the reported cramping by some users may be due to dehydration, and extra water intake is vital when supplementing with creatine.
Short or long-term creatine supplementation (up to 21 months) was found to have no significant effect on a 54-item panel of quantitative blood and urine markers or on a 15-item panel of qualitative urine markers. Creatine did not cause any clinically significant changes in serum metabolic markers, muscle and liver enzyme efflux, serum electrolytes, blood lipid profiles, red and white whole blood cell hematology, or quantitative and qualitative urinary markers of renal function.
In addition, experiments have shown that creatine supplementation improved the health and lifespan of mice. Whether these beneficial effects would also apply to humans is still uncertain.
Creatine supplementation, in the dosages commonly used, results in urinary concentrations that are 90 times greater than normal. The long term effects of this have not been investigated, but there is possibility for a variety of nephrotoxic, i.e., kidney damaging, events. There is potential for direct toxicity on renal tubules where urine is formed, and for acceleration of kidney stone formation. Creatine has been shown to accelerate the growth of cysts in rats with Polycystic Kidney Disease (PKD). Studies have not yet determined if Creatine supplementation will accelerate the growth of cysts in humans with PKD."[1]


Effects Research


Creatine supplementation and the total work performed during 15-s and 1-min bouts of maximal cycling.

Nine untrained male subjects participated in a placebo (Pl)/creatine (Cr), single-blind study conducted over a 5-wk period. Placebo and Cr treatments were presented in a sequential manner because muscle Cr washout time after supplementation is unknown. The mean ( +/- SE) age, height, and initial body mass for the subjects was 25.7+/- 1.2 yr, 177 +/- 2 cm, and 78.5 +/- 3.8 kg, respectively. Each subject performed five 15-s bouts of maximal cycling (1-min rest periods) after 7 d of Pl (6 g glucose X 5 doses daily) and again after ingesting Cr for 7 d (5 g creatine plus 1 g glucose X 5 doses) with a 2-wk intervention period. Only 6 of 9 subjects were able to complete five 1-min bouts of maximal cycling (5-min rest periods) after an additional 2 d of Pl and Cr treatment. Cr ingestion resulted in a significant increase in the work performed during each 15-s bout of maximal cycling compared to Pl trials. Moreover, the total work completed during five 15-s bouts of cycling increased significantly from 47.5 +/- 2.3 kJ with Pl treatment to 50.6 +/- 2.3 kJ after Cr supplementation (P < 0.05). Peak blood lactate concentrations determined 4 min after the fifth 15-s work bout were 14.4 +/- 0.5 mmol.L-1 and 14.3 +/- mmol.L-1 for Pl and Cr trials, respectively (P < 0.05). Total work completed during five 1-min bouts of maximal cycling was not significantly increased after Cr supplementation (P > 0.05). Additionally, Cr supplementation did not slow the rate of decline in the work accomplished during repeated bouts of maximal cycling. These findings suggest that Cr ingestion may augment the rate of ATP resynthesis from phosphocreatine during exercise in untrained subjects.[2]

Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance?

Fatigue sustained during short-term, high-intensity exercise in humans is associated with the inability of skeletal muscle to maintain a high rate of anaerobic ATP production from phosphocreatine hydrolysis. Ingestion of creatine monohydrate at a rate of 20 g/d for 5-6 d was shown to increase the total creatine concentration of human skeletal muscle by approximately 25 mmol/kg dry mass, some 30% of this in phosphorylated form as phosphocreatine. A positive relation was then shown between muscle creatine uptake and improvements in performance during repeated bouts of maximal exercise. However, there is no evidence that increasing intake > 20-30 g/d for 5-6 d has any potentiating effect on creatine uptake or performance. In individuals in whom the initial total creatine concentration already approached 150 mmol/kg dry mass, neither creatine uptake nor an effect on phosphocreatine resynthesis or performance was found after supplementation. Loss of ATP during heavy anaerobic exercise was found to decline after creatine ingestion, despite an increase in work production. These results suggest that improvements in performance are due to parallel improvements in ATP resynthesis during exercise as a consequence of increased phosphocreatine availability. Creatine uptake is augmented by combining creatine supplementation with exercise and with carbohydrate ingestion.[3]
Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol. 83(6): 2055-2063, 1997.---"The effects of oral creatine supplementation on muscle phosphocreatine (PCr) concentration, muscle strength, and body composition were investigated in young female volunteers (n = 19) during 10 wk of resistance training (3 h/wk). Compared with placebo, 4 days of high-dose creatine intake (20 g/day) increased (P < 0.05) muscle PCr concentration by 6%. Thereafter, this increase was maintained during 10 wk of training associated with low-dose creatine intake (5 g/day). Compared with placebo, maximal strength of the muscle groups trained, maximal intermittent exercise capacity of the arm flexors, and fat-free mass were increased 20-25, 10-25, and 60% more (P < 0.05), respectively, during creatine supplementation. Muscle PCr and strength, intermittent exercise capacity, and fat-free mass subsequently remained at a higher level in the creatine group than in the placebo group during 10 wk of detraining while low-dose creatine was continued. Finally, on cessation of creatine intake, muscle PCr in the creatine group returned to normal within 4 wk. It is concluded that long-term creatine supplementation enhances the progress of muscle strength during resistance training in sedentary females."[4]

Nootropic Activity in Vegetarians
"Creatine administration was shown to significantly improve performance in cognitive and memory tests in vegetarian individuals involved in double-blind, placebo-controlled cross-over trials. Vegetarian supplementation with creatine seems to be especially beneficial as they appear to have lower average body stores, since meat is a primary source of dietary creatine."[1]

Creatine improves health and survival of mice.

The supplementation of creatine (Cr) has a marked neuroprotective effect in mouse models of neurodegenerative diseases. This has been assigned to the known bioenergetic, anti-apoptotic, anti-excitotoxic, and anti-oxidant properties of Cr. As aging and neurodegeneration share pathophysiological pathways, we investigated the effect of oral Cr supplementation on aging in 162 aged C57Bl/6J mice. Outcome variables included "healthy" life span, neurobehavioral phenotyping, as well as morphology, biochemistry, and expression profiling from brain. The median healthy life span of Cr-fed mice was 9% higher than in control mice, and they performed significantly better in neurobehavioral tests. In brains of Cr-treated mice, there was a trend towards a reduction of reactive oxygen species and significantly lower accumulation of the "aging pigment" lipofuscin. Expression profiling showed an upregulation of genes implicated in neuronal growth, neuroprotection, and learning. These data show that Cr improves health and longevity in mice. Cr may be a promising food supplement to promote healthy human aging.[5]

References
[1]Wikipedia: Creatine Supplements
[2] Creatine supplementation and the total work performed during 15-s and 1-min bouts of maximal cycling.
[3] Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance?
[4] Long-term creatine intake is beneficial to muscle performance during resistance training
[5] Creatine improves health and survival of mice




No comments:

Post a Comment